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Es wird die Invarianzgruppe eines bekannten HAMiLTON-Operators, der die Torsion und Rotation 
von H 2 0 2 beschreibt, gegeben. Dabei erweist es sich als notwendig, den Basisbereich des Torsions-
winkels rj mit 4 7i zu wählen. Mit dieser Gruppe wird eine Klassifizierung der Energieterme durch-
geführt und Auswahlregeln abgeleitet. 

Die Ergebnisse sollten auch für Strukturanaloge des Wasserstoffperoxyds anwendbar sein. 

Die folgenden Betrachtungen schließen an eine 
Arbeit von HUNT, LEACOCK, PETERS und HECHT 2 

an. Es wird eine gruppentheoretische Analyse zum 
Torsions-Rotationsspektrum des Wasserstoffperoxyds, 
H 2 0 2 gegeben. Die Ergebnisse von HUNT et al .1 

werden (bis auf einen Punkt) reproduziert und er-
weitert. Den wesentlichen Inhalt der vorliegenden 
Arbeit sehe ich in der weitergehenden und voll-
ständigeren Diskussion der Symmetrieeigenschaften, 
die von gruppentheoretischen Gesichtspunkten aus-
geht und für Verallgemeinerungen Wege aufzeigt. 

Die Koeffizienten von H%s, HR a , H t enthalten 
neben Anteilen, die in r] die Periode 2 n haben, 
auch von r] unabhängige Anteile. Die Koeffizienten 
von Hryl und //RT sind Funktionen von r\ mit der 
Periode 4 n. 

Zunächst wird der Teil des HAMiLTON-Operators (1), 
(I, 3.2) betrachtet, der die interne Rotation (Tor-
sion) beschreibt. 

#T=gu(y) pig~yt(v) a(v) vn gu (v) 
+ Vx cos rj + V2 cos 2 7] + V3 cos 3 rj (2) 

1 R. H. HUNT, R. A . LEACOCK, C. W . PETERS U. K . T . HECHT, 
J. Chem. Phys. 42 , 1931 [ 1 9 6 5 ] , im weiteren mit I be-
zeichnet. 

2 R. A . LEACOCK, Dissertation, Univ. of Michigan 1963 , im 
weiteren mit II bezeichnet. 

3 H. H. NIELSEN, in Handbuch der Physik Bd. 3 7 / 1 , Verlag 
Springer, Berlin 1959, S. 195. 

So ist die Betrachtung auf Strukturanaloge (z. B. 
H2S2 oder S2F2 ) sofort übertragbar. Sie gilt aber 
auch für solche Moleküle, die zwei gleiche tordie-
rende Gruppen mit je einer Symmetrieebene haben, 
welche die Torsionsachse enthalten. C H 2 F — C H 2 F 

wäre ein Beispiel hierfür. 
Ich übernehme aus I den HAMiLTON-Operator. Er 

lautet, in einfacher Weise umgeschrieben und wegen 
der Nichtvertauschbarkeit von rj und pn symmetri-
siert3 mit den gleichen Symbolen wie in I, Seite 
1945 4 ' 5 . 

-F2) — G(BC — D2) ] P2 (HRs) 
( # R a ) 

( # R R ) 

( # R T ) 

( # T ) 

(1) 

mit a(t]) =a(i] + 2ji) 
= 2 A(V)I(A(V)G(V)-F2(V)), 

wobei a(rj) aus (1 ,3.4) übernommen werden konnte, 
da ci(rj) von der Kontakttransformation (I, 3.3) 
nicht beeinflußt wird, die ich später nicht anwenden 
werde 6 . 

Der HAMiLTON-Operator (2) führt zu einer linearen 
Differentialgleichung zweiter Ordnung mit eindeuti-
gen, in rj periodischen Koeffizienten, die im Falle 
des H 2 0 2 auch beschränkt sind, was man mit den 

4 Es werden alle Bezeichnungen von I übernommen bis auf 
den Torsionswinkel, der hier mit rj bezeichnet wird, und 0, 
das durch / ersetzt wird. 

5 In der Gleichung für B (x) [I, S. 1945] ist C' durch C0 zu 
ersetzen. 

6 Das Glied mit p„ Px im vollständigen HAMiLTON-Operator 
(I, 3 .2) wird später explizit berücksichtigt. 

H = g[G(BC-D2) +C(AG-F2)] (P2 + Py2 + P2) +g[(2 B~C)(AG 
+ g[G(BC-D2) —C(A G — F2)] (P2-P 2) 
-2g[(AG-F2) D] (PyPz + PzPy) 
- Px g-1'* {Fl (AG- F2)) Pn g* - g<> Pn g-^ (Fl (AG- F2)) Px 

+ gu pr, g ( 2 AI(AG-F2))Pv g'< + V(V) 
mit g = l / [ 4 ( ^ G — F2) (BC — D2) ] . 
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hier gültigen Funktionen A(rj), B{rj), C(rj), D{rj), 
F(rj) und G{rj) nach I, Seite 1934, abschätzen 
kann. 

Im folgenden Abschnitt wird die Invarianzgruppe 
des HAMiLTON-Operators HT aufgestellt. Es ist offen-
sichtlich 2 ' 1 , daß HT invariant gegen folgende Opera-
tionen ist: 

E : o t : r]-+2ji-r], oc: rj-^-rj. 

Diese drei Elemente sind noch keine vollständige 
Gruppe. Sie läßt sich aber leicht bilden, wenn man 
das Produkt at • o c = T :r } -^~2n + rj hinzunimmt. Das 
erfordert aber, daß man den Basisbereich, in dem 
man die Operationen definiert, auf 0 ^ 71 
erweitert7, zumal der gesamte Operator (1) Koef-
fizienten enthält, die in 4 n periodisch sind. Dann 
lauten die neuen Definitionen der Operationen: 

E : r j - ^ r j modulo 4JI, 
T : RJ *-> 2 JI + R\, 

° t : r j - > 2 j i - 7 ] , ( 3 ) 

o c : RJ —> 4 -JI — R] 

(ihre Wirkung ist in Abb. 3 demonstriert). 

Die Gruppe (2) ist isomorph einer Liniengruppe L 
(Raumgruppe in einer Dimension) einer Kette mit 
zwei Gliedern der Länge d = 2jis. 

Die Operationen der Gruppe L sind vertauschbar, 
die Gruppe ist also AßELsch. Die folgende Gruppen-
tafel Tab. 1 zeigt, daß sie isomorph zur Vierergruppe 
V ist. 

E T Ot Oc 

E E T Ot Oc 
T T E Oi Ot 
iH Ot oc E T 

Oc oc ot T E 

Tab. 1. Multiplikationstafel der Gruppe L. 

Ihre Charaktertafel Tab. 2 ist also 

L E T AT oc 

AT 1 I I 1 
A 2 1 1 — 1 - 1 
B , 1 - 1 1 - 1 
B 2 1 - 1 - 1 1 

Tab. 2. Charaktertafel der Gruppe L. 

Die Liniengruppe L enthält als invariante Unter-
gruppe die Translationsgruppe (E, T ) . 

Der etwas willkürlich erscheinende Schritt der 
Erweiterung des Basisbereichs, der eine Folge der 
Forderung war, daß zu einem HAMiLTON-Opera/or 
eine (vollständige) Gruppe gehören soll, wird viel-
leicht auch plausibel durch die Wahl des z, y, z-
Koordinatensystems in I und II. Es ist entsprechend 
Abb. 1 so gewählt worden, daß der Schwerpunkt 
des Moleküls bei der Torsion im Koordinatenur-
sprung liegen bleibt und die ar-Adise stets den 
Diederwinkel halbiert. Dann befindet sich aber das 
Molekül erst wieder mit rj = 4 n in der Ausgangs-
position. 

Abb. 1. W a h l des Koordinatensystems x, y, z und Definition 
des Torsionswinkels r) nach I und II. Das Molekül ist auf die 

xy-Ebene und auf die yz-Ebene projiziert. 
MX — =JTXH; M2

 = M2 —TTIQ . 

Bevor ich die Erweiterung des Basisbereichs von 
rj weiter begründe, möchte ich noch die Definition 
von rj nach Abb. 1 diskutieren. Da im weiteren 
Verlauf der Arbeit rj = <&x — <P2 entsprechend I ver-

Abb. 2. Definition der EuLEKsdien Winkel yj, 0 , zwischen 
dem raumfesten Koordinatensystem X, Y, Z und den mofekül-

„ festen" Koordinatensystem x, y, z von Abb . 1. 

wendet wird, wobei und EuLERSche Winkel 
sind, die zusammen mit den EuLERschen Winkeln y 
und © die Lage der Massen m1 und m2' in einem 

7 Streng sind in einem Basisbereich 0 ^ rj 2 n die De-
finitionen von HUNT et a l . 1 für oT und oc identisch. 

F. MATOSSI, Gruppentheorie der Eigenschwingungen von 
Punktsystemen, Springer-Verlag, Berlin 1961 . 



raumfesten Koordinatensystem beschreiben, wäre es 
strenger einen Torsionswinkel rj einzuführen. Dessen 
Scheitel läge auf der z-Achse. Die Funktionen A, B, 
C, D, F und G wären dann zu modifizieren. Ihre 
Symmetrieeigenschaften bleiben aber erhalten, zumal 
die Funktionswerte für r] = n'Ji, n = 0 , 1 , . . . mit 
denen der nicht modifizierten zusammenfallen. Be-
denkt man im Falle des H 2 0 2 das Massenverhältnis 
m 1 /m 2 = l / 1 6 , so erscheint die in I verwendete 
Näherung rj = — <fi2 noch tragbar. Sie bedeutet, 
daß die interne Rotationsachse m2 — m2 dauernd 
mit der z-Achse zusammenfällt. 

Wie in (I, 3 .12) lautet audi hier der Ansatz der 
Torsionseigenfunktionen von (2) 

Mm(rj) = eifi P(rj), (4) 

wobei P(rj) eine periodische Funktion, / durch Rand-
bedingungen zu bestimmen ist. 

Der Ansatz beruht auf der Linearität der Differen-
tialgleichung und der Eindeutigkeit und Periodizität 
ihrer Koeffizienten9 , was sowohl bei (2) als auch 
bei (I, 3 .10) gegeben ist. Zusammen mit den Eigen-
funktionen des von rj unabhängigen Anteils von 
H , einem HAMILTON-Operator eines symmetrischen 
Kreisels, bilden die Mm(tj) eine geeignete Basis zur 
Aufstellung der Matrix von H. Die Näherungs-
funktionen lauten analog (I, 3 .11 ) 1 0 

u = VjKMMnr = -±-eiK* eiM«> 6 W < 9 ) e*'" P (V). (5) 
£ 71 

\p, 6, <P= {<E>1 + &2)/2 EuLERsche Winkel nach 
Abb. 2. Da u gegen die Transformationen —> 
+ 2 7inx, 02 - > 02 + 2 7i n2 invariant sein muß, 
oder invariant gegen die Transformationen 

0 + (nx + n2) 7i, rj-^-rj + (n1 — n2) 2 n 

folgt als Randbedingung für die Funktionen u 

(K/2) (nj + n2) +f(nt- n2) (N ganze Zahl) 
(6) 

die sich mit / = — K/2 erfüllen läßt. 
Die Randbedingung (6) läßt sich auch als Grenz-

fall einer allgemeineren Randbedingung für un-
gleiche tordierende Molekülgruppen auffassen. Sie 

11 C. C. LIN U. J. D . SWALEN, Rev. Mod. Phys. 31 , 841 [ 1 9 5 9 ] , 
Gl. ( 3 - 2 0 ) . 

9 H. MARGESAU U. G. M . MURPHEY, The Mathematics of 
Physics and Chemistry, D. van Nostrand Co. Inc., 2nd Ed. 
New York 1957 , S. 80. 

10 Da ich die Kontakttransformation (I, 3 .3) nicht anwende, 
treten im Gegensatz zu I ungestrichene EuLERsche Winkel 
auf. 

lautet für den allgemeineren Fall etwa nach LIN und 
S W A L E N 1 1 

( / a i n i + / a * n 2 ) + / K - n 2 ) = N . (7) 

(7) geht in (6) über, wenn die Trägheitsmomente 
Iai gleich sind. Mit der Randbedingung (6) wird 
(4 ) 1 2 

Mm(ij) P(rj). (8) 

Mit K gerade ist Mm(r]) in 2 rr, mit K ungerade ist 
4 7i periodisch. Damit hat sich wieder die Not-
wendigkeit ergeben, den Basisbereich von rj auf 4 n 
zu erweitern. 

Für das Potential V (tj) wähle ich also den in 
Abb. 3 angegebenen Basisbereich. 

Abb. 3. Basisbereich des Potentials V (rj) beim H 2 0 2 und 
Wirkung der Symmetrieoperationen der Gruppe L. 

Da im weiteren Verlauf nur die „SpiegeP'sym-
metrie um rj — 0 mod 2 n und rj = JI mod 2 JI und die 
Periodizität des Potentials V (rj) in rj mit 2 JI be-
nutzt wird, genügen auch andere Potentialformen 
den Bedingungen. Ein Beispiel gibt Abb. 4. 

Abb. 4. Beispiel eines Potentials, für das die Betrachtungen 
dieser Arbeit ebenfalls zutreffen. 

Unter der Gruppe L, deren Anwendung mir nach 
den vorausgehenden Betrachtungen berechtigt er-

12 Für die Torsionseigenfunktionen verwende ich die gleiche 
Form wie in I und II. da die Differentialgleichung zu (2) 
und (I, 3 .10) und die Randbedingungen (6) und (I, S. 
1935) oder (II, 21) übereinstimmen. Ich konnte allerdings 
die allgemeine Invarianz der Randbedingungen in I unter 
der Kontakttransformation (I, 3 .3) nicht verifizieren. 



scheint, klassifizieren sich die Eigenfunktionen Mm(rf) w 
< 

Mni (rj) =ji~1 2 4 n ) cos ki] 
k 

Mm (V) = jz~1 I bp s in (k + i)V 
k 

M„Av)=^~1Icin) cos(k^ )V 
k 

2 4 m ) sin A; tj 
k 

(e gerade, o ungerade) 

Da das Dipolmoment zu tu(r]) = ju0 cos (77/2) an-
gesetzt werden kann, sind die Torsionsübergänge 
durch die Integrale 

Fol Mn* (rj) ( c o s t]/2) Mn'r'(r]) d ^ 

bestimmt. Da ju(r]) der B2-Spezies von L zuzuordnen 
ist, sind die Auswahlregeln: 

Ax <—> B 2 , A 2 <—> Bx 

oder r = 1 — > r = 3, r = 4 ^—> r = 2 (10) 

unabhängig von n, also auch n <—> n . Es ist zu 
beachten, daß sich auch stets die Parität von K 
bei einem Ubergang ändert. Dies ist ein Hinweis, 
daß man eigentlich streng von Torsionsübergängen 
nicht sprechen kann. Es besteht entsprechend der 
IAM-Methode eine Wechselwirkung über die Rand-
bedingungen 11. Im folgenden diskutiere ich den 
HAMiLTON-Operator Ht + HRS -F HR:x , wobei H-P nach 
(2) und 

#Rs + #Ra = 
G p 2 , C p 2 , B p „ 

2 (AG-F2) x 2 (BC-D2) v 2 (B C-D2) 
(11) 

gewählt wird. Die Koeffizienten A, B, C, D2, F2^ 
G sind nach (I, S. 1945) Funktionen des Torsions-
winkels t] mit der Periode 2 ji. Sie ordnen sich alle 
der totalsymmetrischen Spezies Ax der Gruppe L zu. 
Somit ist der HAMiLTON-Operator H^ + /7Rs + #R a 

invariant unter den Operationen der Produktgruppe 
L ® V mit 16Elementen, wobei V die bekannte 
Vierergruppe des asymmetrischen Kreisels ist. 

Jetzt betrachte ich den vollständigen HAMILTON-

Operator H, ich ergänze also #RR + #RT • H ist jetzt 
nur noch invariant gegen eine Untergruppe von 
L ® V, nämlich die Gruppe V mit den Elementen 

ie folgt: 

Spezies von L Parität von K x 

Ax e 1 

Bx o 2 

B, o 3 (9) 

A 2 e 4 

( E ) , ( C 2 X ) , ( C 2 X - T ) , ( T ) . C 2 X ist eine der Sym-
metrieoperationen 13 der Vierergruppe V des asym-
metrischen Kreisels. Die Gruppe V ist isomorph zur 
Vierergruppe V. Ihre Spezies bezeichne ich ent-
sprechend der folgenden Charaktertafel: Tab. 3. 

V E C2x C2% • T T 

Ät 1 1 1 1 
AO 1 1 - 1 - 1 
BI 1 - 1 1 - 1 
B-2 1 - 1 - 1 1 

Tab. 3. Charaktertafel der Gruppe V. 

Geeignete Basisfunktionen (I, 3 .13 ) , mit denen die 
Matrix des HAMiLTON-Operators H aufgestellt werden 
kann, sind mit (5) 

Vi M„t = XfHK±)MMnt 

= y2 [V>jkm±Vj(-K)m] Mnz(ri)iÜT £ # = 0 , 

^o Mm = Vjom Mut für K = 0 (12) 
wobei 

(1/1/2) [yjjKM±Vj(-K)Ai] = ®jk7 mit 7 = 0 , 1 

Eigenfunktionen des symmetrischen Kreisels in der 
WANG-Basis sind. Mit den Definitionen der EULER-

schen Winkel xp, (9, <Z> nach Abb. 2 bewirkt die 
Transformation C2 x der Vierergruppe V 14 

C 2 x : + (13) 

Angewendet auf die Eigenfunktionen 0 j k y erhält 
man 1 3 '1 4<1 5 : 

Cfr&JKy =(-DJ+K+r4>°JKy (14) 

Mit (14) und (3) ergibt sich eine Klassifikation 
der Basisfunktionen (12) nach den Spezies T V der 

13 R. S. MULLIKEN, Phys. Rev. 5 9 , 873 [ 1 9 4 1 ] . 
1 4 C. VAN WINTER, Physica 2 0 , 2 7 4 [ 1 9 5 4 ] , Formel (34 ) . -

R. S. MULLIKEN, Phys. Rev. 39 , 8 7 3 [ 1 9 4 1 ] , Formel ( 1 3 ) . 

13 In I, Tab. II, ist im Gegensatz zur Literatur eine andere 
Transformation verwendet. 



J gerade J ungerade 

Iy / V R L / L R V / L rh 

Ä I A , B X A I W+ Mi A 2 W+ Mi A , B X AL ip- Mi A 2 W- Mi 
VOM-L Wo Mi 

W- Mi 

A 2 A , B X B 2 W- Mz B I W- M2 A , B X B 2 W+ M 3 B , w+ m2 
B I BY , B Z B 2 W+ M3 B I W+ M 2 BY, B Z B 2 W-M3 B , w- m2 
Jß2 B Y , B Z A I W_ M I A 2 W- Mi By , B z A I W+ Mi A 2 W+ Mi 

Wo Mi Wo Mi 

Tab. 4. Zusammenstellung von Basisfunktionen, die der gleichen Spezies T V der Gruppe V zugeordnet sind. J1 v und J1 L sind 
Speziesbezeidinungen der Gruppen V und L. 

Gruppe V, die sich auf die Klassifikation der Eigen-
funktionen von H überträgt. Diese Eigenfunktionen 
von H sind Linearkombinationen von Basisfunk-
tionen (12 ) , die der gleichen Spezies angehören und 
in Tab. 4 zusammengestellt sind. 

Da der Dipoloperator 

ju = ju0 cos (rj/2) cos (x, Z) 
= /-IQ COS (rj/2) sin 0 sin © 

der A2 ® A j = A 2 Spezies zugeordnet werden kann, 
ergeben sich die strengen Auswahlregeln 

(15) -> A 2 5 

Die Auswahlregeln (15) enthalten die Auswahl-
regeln (10) und die eines durch //RR „gestörten" 
asymmetrischen Kreisels mit einer Dipolmoment-
komponente JLIX, nämlich (A, B x ) < • > (A, B x ) , 
(By , B z) -<•—> (By , B z ) , die nicht die eines asym-
metrischen Kreisels sind. Bei dieser Aufteilung muß 
man sich aber klar sein, daß immer ein „Torsions"-
Übergang mit einem „Rotations"-Ubergang gekop-
pelt ist, daß es also nur Torsions-Rotations-IJber-
gänge gibt. Da es infolge //RT und #RR zur Mi-
schung der jeweils in einer Halbzeile der Tab. 4 
aufgeführten Funktionen für ein / , z. B. xp + M1 und 

kommt, sind die Auswahlregeln (15) um-
fassender als die in I, Tab. III. Selbstverständlich 
enthalten sie diese: 

n <—n 
( t ) = 1 ^ — ^ 3 
(r) = 2 < — > 4 

A/ = 0 A(J) = ±1 

A(K) = ±\ Ä(K) = ± 1 
(K+)+-+(K_) 17 (K + )+-+(K+) oder 

Durch Klammern ist angedeutet, daß es sich um 
keine guten Quantenzahlen mehr handelt. Die Indizes 
+ und — beziehen sich auf die Eigenfunktionen 
ip + und ip _ . Durch die erwähnte Mischung der 
Eigenfunktionen sind jetzt auch etwa Übergänge mit 
(T) = — > 2 , (x) = 3 < >4 möglich. Die Mischung 
von Zuständen gleicher Spezies wird umso stärker, 
je größer die Wechselwirkung /7RT ist. Auf die 
Einführung der üblichen K + -Bezeichnung (ee, 
eo, oe, oo) verzichte ich, da auch sie infolge der 
Mischung von Zuständen nicht mehr exakt ist. 

Die Einführung einer Liniengruppe L mit Ele-
menten, die in einem Basisbereich 0 < JI 

definiert sind, führte mit einer Untergruppe V der 
Produktgruppe V ® L zu einer Klassifizierung der 
Torsions-Rotationszustände von Molekülen des Typs 
H 2 0 2 und zu Auswahlregeln, die mit den Spezies-
bezeichnungen von V streng beschrieben werden 
konnten. 

Auch die übliche Klassifizierung der Methyltorsion 
mit der Gruppe C3 v läßt sich in der Sicht dieser 
Arbeit als eine Klassifizierung nach einer Linien-
gruppe — isomorph zu C3 v — einer Kette von drei 
Gliedern der Länge d = 2n/?> mit einem Basisbereich 
von 2 Jt beschreiben. Die Torsionen mehrerer Methyl-
gruppen gehorchen dann entsprechend vieldimensio-
nalen Raumgruppen. 

Ich danke Herrn Dr. M. WINNEWISSER, Karlsruhe 
und Herrn G . WINNEWISSER, Durham, North Carolina 
für interessante Diskussionen und Herrn Dr. H. D. Ru 
DOLPH, Freiburg, für wertvolle Hinweise. — Der Deut 
sehen Forschungsgemeinschaft und dem Fonds der Che 
mie danke ich für finanzielle Unterstützung. 

1 6 H. RADEMACHER U. F. REICHE, Z. Phys. 4 1 , 4 5 3 [ 1 9 2 7 ] , For-
mel (2) . 

17 Unterschiedlich zu I, Tab. III, wegen 15. 


